RÉPONSE À LA COVID-19 - Nous nous engageons à soutenir notre communauté scientifique durant la pandémie. En savoir plus  

Gene Editing (CRISPR/Cas9)

Automated solutions to scale up the promise of gene editing with CRISPR engineering

What is gene editing?

Gene editing is a genetic manipulation in which a living organism’s genomic DNA is deleted, inserted, replaced, or modified. Gene editing is a site-specific targeting to create breaks in DNA through various techniques and does not always involve repair mechanisms. It consists of two techniques – inactivation and correction.

Inactivation involves the turning of a target gene, and correction facilitates the repair of the defective gene through a break in the gene. Gene editing has vast potential in a myriad of fields, including drug development, gene surgery, animal models, disease investigation and treatment, food, biofuel, biomaterial synthesis, and others.

Though CRISPR, a major gene editing technique, has been extensively used recently, gene editing was first studied in the late 1900s. Since the onset of CRISPR, previously an ambitious application, gene therapy has become the most sought-after application of gene editing. This can be achieved through two approaches, gene addition, which adds to the existing genetic material to make up for faulty or missing genes, and gene editing, which treats diseases by directly modifying the disease-related DNA.

CRISPR/Cas9 Mechanism

CRISPR/Cas9 Mechanism. The Cas9 enzyme is activated by first binding to a guide RNA, then binding to the matching genomic sequence that immediately precedes 3-nucleotide PAM sequence. The Cas9 enzyme then creates a double-strand break, and either the NHEJ or the HDR pathway is used to repair the DNA, resulting in an edited gene sequence.

A guide RNA (gRNA) similar to a crRNA is designed to target a region in the gene, and the Cas9 enzyme can create doublestrand breaks in this specific region of the host cell’s genome (Figure 1). After a double-strand break is made, the cell will undergo one of two repair pathways: the nonhomologous end joining (NHEJ) pathway or the homology-directed recombination (HDR) pathway. The NHEJ pathway is commonly used to disrupt genes via base insertions or deletions (indels), while the HDR pathway can be used to knock in a reporter gene or an edited sequence by exchanging sequences between two similar or identical molecules of DNA.

 

Scaling up gene editing with CRISPR engineering

“CRISPR” – Clustered Regularly Interspaced Short Palindromic Repeats. These DNA sequences were first discovered as a part of immune system in prokaryotes such as bacteria and archaea, and garnered importance as a gene editing tool since 2012 (Jinek et al., 2012). It has a great promise in a myriad of applications, i.e. including, agriculture, disease modeling, gene therapy, drug discovery to name a few. The precision it has makes it a perfect tool for insertion (knock-ins), deletion (knockouts) and other modifications of DNA sequences. It has replaced existing tedious and expensive gene-editing tools like TALENS and ZFNS to a large extent.

CRISPR sequences contain DNA from previous viral invaders called spacers after each palindromic repeat, and these aid in detection and destruction of similar future viruses. Understanding this mechanism (Jinek et al., 2012) led to the first use of CRISPR in eukaryotic cells (Cong, L, et al., 2013) and later in other cell types plus organisms pertaining to different fields. The CRISPR – Cas9 systems has two major components which form a ribonucleoprotein complex. The first component or guide RNA binds to a complementary DNA sequence in genome and the second component Cas9 from Streptococcus pyogenes (SpCas9) makes a double strand break at the site of target. A protospacer adjacent motif (PAM) is where the nuclease initially binds for the upstream cut to occur. Different CRISPR nucleases have different PAM sites and once the cut is made the cells repair system is activated and edits to the genome is initiated as well.

Gene editing workflow

Gene editing workflow using CRISPR mechanisms to attain a confirmed edit cell line has various steps. Effective optimization of these steps using the right tools contributes to an efficient process to cut down the time, effort, and costs of various scientific advances. This approach helps accelerate R&D, revolutionizes drug discovery, disease cure, gene-edited crop production, etc. We discuss the steps involved and effective solutions we offer to support the scientific communities worldwide to achieve their endeavors through gene-editing.

Gene editing workflow

 

  1. Transfection stable

    Identification of the best method for delivering the CRISPR-Cas9 system into the cells of interest is the first step in the gene editing workflow. When considering which transfection method to use, transfer efficiency and subsequent cell viability are important factors. Transfection efficiency optimization, construct design, delivery method assessment, host line selection are some important factors to be considered.

  2. Pool generation and expansion

    Creating a custom gene-modified cell line starts with the evaluation of the transfected cell pool to effectively screen the edited from the unedited in using different selection methods like antibiotic based, fluorescent protein reporter based, antibody tagged cell sorting, and others. The successfully transfected/screened cell pool is then expanded for further monoclonal cell line development.

  3. Enrichment & single-cell isolation

    Enrichment for cells of interest occurs after cells have been transfected. In this step, only those cells that carry the desired edits are identified and expanded. Individual cells are then isolated for confirmation of monoclonality required for regulatory approval.

  4. Monoclonality verification and growth

    La preuve de la monoclonalité (critère réglementaire pour les lignées cellulaires thérapeutiques) est généralement documentée à partir d’images, où une image d’une cellule unique est enregistrée et incluse dans les déclarations réglementaires. Many researchers now routinely use imaging systems, such as the CloneSelect Imager, to verify monoclonality at day 0, and monitor cell growth in cell culture media.

  5. Verification and functional confirmation of edits

    It is important to confirm that target cells have been successfully edited prior to moving on to downstream assays. This can be accomplished either through direct detection of edits using genomic methods or through indirect detection using cellular or proteomic methods. Picking an appropriate assay for your system is the key. Downstream assays for verification and functional confirmation could be picked from various conventional/ NGS methods. Conventional : PCR, Sanger, qPCR, western blot, cell – based assays, etc. NGS : High resolution on and off –target assessment, Single cell RNA- seq, ChIP-Seq, etc

  6. Scale up for applications - Analyze and make discoveries

    Phenotype investigation can begin once it has been confirmed that the cells are correctly edited. Further evaluation of the system with a drug as part of a cell-based assay may be desired during target or lead discovery and validation.

Research solutions for validating CRISPR/Cas9 gene edits

Molecular Devices’ family of instruments can effectively be used to perform/screen experiments ensuring the success of gene-editing endeavors. The new CloneSelect Imager Florescence (CSI-FL) provides monoclonality Day0 assurance after single-cell printing, transfection efficiency, cell confluency, and multichannel fluorescence screening data to validate gene editing efficacy through shorter tracking times, low risk of over passaging, and robotics. 

In addition, our SpectraMax i3x Multi-Mode Microplate Reader can be used to assess transfection efficiency, monitor cell growth, quantitate DNA & protein, and validate CRISPR/Cas9 edits through ScanLater Western Blot analysis. High-quality images of autophagosomes can be acquired using the ImageXpress Micro Confocal System while the MetaXpress HCI software can identify and quantitate individual autophagosomes from every cell allowing us to analyze phenotypic changes occurring from the CRISPR/Cas9 gene edits.

  • Accelerating gene edited cell lines

    Accelerating gene edited cell lines

    Learn how the all new CloneSelect® Imager FL can aid in easy detection of successfully transfected cells, cutting cell line development timelines and scaling up your research faster. Reject low transfection efficiency pools at an early stage, confirm and track various CRISPR edits with multi-channel fluorescence detection, and screen cells with accuracy and confidence while reducing the risk of over-passing disturbances with robotics redesign.

    Lire la note d'application  

    Titre et criblage pour la productivité de clones

    Titre et criblage pour la productivité de clones

    Un élément important de l’identification des clones de valeur est la détermination de la productivité de colonies dérivées de cellules uniques. Le criblage pour la productivité au moyen d’approches traditionnelles est un processus laborieux et fastidieux, qui comporte plusieurs étapes, dont l’isolement de cellules uniques à partir d’une dilution limitante, suivie d’une évaluation du titre par ELISA. Le système ClonePix 2 combine la sélection des phénotypes, l’isolement de cellules uniques et le criblage de productivité en une seule étape, ce qui réduit considérablement le temps du criblage et augmente le nombre de candidats.

  • Clonalité en toute confiance en utilisant la calcéine AM

    Clonalité en toute confiance en utilisant la calcéine AM

    Clonalité en toute confiance en utilisant la calcéine AM avec un effet minimal sur la viabilité

    Ici, nous démontrons une séquence de travail optimale en utilisant le réactif de fluorescence, la calcéine AM, avec un instrument CloneSelect™ Imager avec capacité de fluorescence qui montre une viabilité similaire à celle obtenue dans des conditions sans marquage, tout en fournissant simultanément une assurance de clonalité élevée.

    Lire la note d'application  

    CRISPR/Cas9 genomic editing experiments

    CRISPR/Cas9 genomic editing experiments

    Le système d’édition génétique CRISPR/Cas9 est un outil très populaire pour étudier la fonction des gènes en raison de sa grande facilité d’utilisation et de sa précision. Additionally, the system has enormous potential for treating hereditary diseases. Validation of CRISPR/Cas9 gene editing is necessary to ensure that genes of interest are successfully knocked down or knocked out. Here, we demonstrate how Molecular Devices' family of instruments can be utilized in gene editing experiments by using CRISPR/Cas9 to knockdown autophagy-related protein 5 (ATG5) in HEK293 cells.

    View poster  

  • Monoclonalité

    Assurance de monoclonalité

    Le développement de lignées cellulaires et l’assurance de la monoclonalité constituent des étapes essentielles du processus de génération de molécules biopharmaceutiques, telles que les anticorps monoclonaux. Une lignée cellulaire peut être établie après l’isolation d’une cellule viable unique exprimant fortement la protéine d’intérêt. La documentation de preuves de clonalité est l’une des étapes clés de ce processus. Cette preuve de clonalité est généralement documentée à partir d'images, où une image d’une cellule unique est générée et inclue dans les déclarations réglementaires.

    En savoir plus 

    Tri de cellules uniques

    Tri de cellules uniques

    Pour développer des lignées cellulaires, il faut découvrir des clones cellulaires uniques produisant des taux élevés et constants de la protéine thérapeutique cible. La première étape du processus est l’isolation des cellules uniques viables. La dilution limitante, une technique s’appuyant sur la probabilité statistique, requiert beaucoup de temps. L’imprimante CloneSelect Single-Cell Printer permet d’isoler facilement les cellules de façon à optimiser la viabilité cellulaire, tout en fournissant des preuves directes de clonalité par le biais de séries de cinq images capturées durant la distribution des cellules.

  • Efficacité de la transfection

    Efficacité de la transfection

    Transfection efficiency for a fluorescent reporter gene can be monitored in different ways. One way is to measure fluorescence with a microplate reader. This allows one to assess the overall fluorescence level in each test well, but it does not give the percent of cells transfected. A more informative way to assess transfection efficiency is to analyze the cells using an imaging cytometer, where the number of cells expressing detectable fluorescence can be compared to the total cell number. The imaging cytometer has the added benefit of enabling calculation of cell confluence prior to transfection, so that this information can be used as part of assay development.

    Lire la note d'application  

    Validate CRISPR-Edited Cells using Western Blot

    Validate CRISPR-Edited Cells using Western Blot

    CRISPR gene-editing technology requires careful monitoring of the entire process to ensure accurate results. The SpectraMax i3x Multi-Mode Microplate Reader provides a complete solution for analyzing the results of a CRISPR-editing experiment from initial transfection to confirmation of protein knockdown. With the MiniMax cytometer, researchers can assess transfection efficiency by comparing total unlabeled cell counts to counts of fluorescence expressing transfected cells. The ScanLater Western Blot Detection System enables sensitive detection and quantitative analysis of proteins of interest in control and CRISPR-edited cells.

    Lire la note d'application  

Dernières ressources

Resources of Gene Editing